Non-hermitian random matrix theory: Method of hermitian reduction
نویسندگان
چکیده
منابع مشابه
Gap Probabilities in Non-Hermitian Random Matrix Theory
We compute the gap probability that a circle of radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (β = 2) or quaternion real (β = 4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation ...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملCorrelations of eigenvectors for non-Hermitian random-matrix models.
We establish a general relation between the diagonal correlator of eigenvectors and the spectral Green's function for non-Hermitian random-matrix models in the large-N limit. We apply this result to a number of non-Hermitian random-matrix models and show that the outcome is in good agreement with numerical results.
متن کاملNew Developments in Non-hermitian Random Matrix Models
Random matrix models provide an interesting framework for modeling a number of physical phenomena, with applications ranging from atomic physics to quantum gravity 1, . In recent years, non-hermitian random matrix models have become increasingly important in a number of quantum problems 3, . A variety of methods have been devised to calculate with random matrix models. Most prominent perhaps ar...
متن کاملGaussian fluctuations for non-Hermitian random matrix ensembles
Consider an ensemble of N ×N non-Hermitian matrices in which all entries are independent identically distributed complex random variables of mean zero and absolute mean-square one. If the entry distributions also possess bounded densities and finite (4 + ε) moments, then Z. D. Bai [Ann. Probab. 25 (1997) 494–529] has shown the ensemble to satisfy the circular law: after scaling by a factor of 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 1997
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(97)00502-6